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Summary 
 
     Conventional bus service (with fixed routes and schedules) has lower average cost than 
flexible bus service (with demand-responsive routes) at high demand densities. At low demand 
densities flexible bus service has lower average costs and provides user-friendly door-to-door 
service. Bus size is interrelated with service type since large buses have lower average cost per 
passenger than small buses at high demand densities, and vice versa. The service type and 
vehicle size decisions are jointly optimized here for a bus transit system connecting a major 
terminal to local regions. Bus sizes, conventional route spacing and flexible service area are the 
decision variables in a proposed algorithm which optimizes a multi-dimensional nonlinear 
integer optimization problem. Numerical analysis shows how the proposed Variable Mode & 
Multiple Fleets Operation can reduce total cost compared to a Single Fleet & Single Mode 
operation. The sensitivity of results to important parameters is explored. 
 
     Additional details on the problem and its formulation, the solution methods employed, and the 
results obtained are provided in the following report. This report has been submitted for 
publication by a transportation journal under the title “Mixed-Fleet Variable-Type Bus Operation” 
and is currently under review. 
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INTRODUCTION 
In the literature on bus transit systems several studies focus on service type decisions (such as 
conventional service and/or subscription service) or fleet assignment problems (e.g. multiple 
fleet assignment for conventional and flexible bus operation) (1~4). Chang and Schonfeld 
developed optimization models for conventional and subscription bus services (2, 6). They 
confirmed that conventional bus (with fixed routes and fixed schedule) is preferable to 
subscription bus (which has demand responsive routes and flexible schedule) when demand 
density is high, and vice versa. They also studied optimal bus service dimensions (4), multiple 
period optimization of public bus systems (7), and temporal integration of fixed and flexible bus 
systems (3). Zhou et al (5) recently maximized welfare under financial constraints for various 
bus transit service types and determined conditions under which subsidies may be justifiable. 
The above studies provide various approaches for improving the performance of bus transit 
systems. However, most of them consider only one local service area.  

Public bus services with flexible routes and schedules, have attracted considerable interest 
from researchers, especially in recent years (8~21). Lee et al (1) and Fu and Ishkhanov (10) 
analyzed the assignment of buses with dissimilar sizes (i.e. “mixed fleets”) to public transit 
operations. Lee et al (1) studied mixed bus fleet operations in conventional urban public transit 
systems. Fu and Ishkhanov (10) studied mixed fleet bus operation for paratransit services. Mixed 
fleets can reduce total system cost compared to single fleets when demand densities differ 
considerably over time or space because vehicles of different sizes may be matched to the 
operations for which they are most suited. 

Kim and Schonfeld (22, 23) considered bus size and service type jointly, confirming that 
variable-type service can reduce system cost by changing the service type (or “mode”) as 
demand density changes. However, their study optimized decision variables and minimized total 
cost between one terminal and only one local region. The potential benefits of using variable 
service types (or “modes”) and multiple fleets should theoretically increase when multiple 
regions are considered, due to the increased variability of demand densities. To explore these 
potential benefits we analyze in this paper the concept of variable-mode bus operation with 
multiple fleets (VMBOMF) in multiple local regions. To provide efficient service, we optimize 
decision variables for bus sizes (i.e. large bus size and small bus size) and bus service (i.e. route 
spacing in local region for conventional bus, service area in local region for flexible bus). The 
remaining contents are as follows. In the next section we provide the system description, 
assumptions, and cost formulations. Then, we present an optimization algorithm for solving a 
nonlinear integer multi-dimensional minimization problem with four decision variables. Using 
this methodology, we provide a numerical case and sensitivity analysis.  

BUS SERVICE DESCRIPTION AND ITS COST 
The analyzed bus system provides service from a major terminal (or CBD) to multiple local 
regions. In Figure 1, a public bus system serves local regions connected to a central terminal. For 
local regions, either conventional bus or flexible bus can be provided. To analyze this local bus 
system, we specify some simplifying assumptions before explaining the cost functions and their 
optimization.  
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L, W length and width of service area (miles) 5.0, 4.0 
 - ௞ equivalent average trip distance for  route k (=Jk/yc+W/2zc+L/2)ܯ
n number of passengers in one flexible bus tour - 

N, N’ number of zones in local region for conventional and flexible bus - 
ܳ௞௜ round trip demand density (trips/mile2/hr) - 

ܳ௧
௞௜ threshold demand density between conventional and flexible service 

(trips/mile2/hr) - 

r route spacing for conventional bus (miles) - 
ܴ௖

௞௜ round trip time of conventional bus for route k and period i (hours) - 
௙ܴ
௞௜ round trip time of flexible bus for route k and period i (hours) - 

ܵ௖ , ௙ܵ  sizes for conventional and flexible bus (seats/bus) - 

ܵ௖
௞௜, ௙ܵ

௞௜  conventional and flexible bus sizes for route k and period i  
(seats/bus) - 

ܵ௖
௨௣௣௘௥, ௙ܵ

௨௣௣௘௥ upper bound of bus size arrays 
subscript: c = conventional, f=flexible - 

ܵ௖
௟௢௪௘௥, ௙ܵ

௟௢௪௘௥ lower bound of bus size arrays 
subscript: c = conventional, f=flexible - 

௖ܥܵ
௞௜, ௙ܥܵ

௞௜ service cost for route k and period i  
subscript: c = conventional, f=flexible - 

௖௢ܥܵ
௞௜, ௙௢ܥܵ

௞௜ operator cost for route k and period i  
subscript: c = conventional, f=flexible - 

௖௨ܥܵ
௞௜ , ௙௨ܥܵ

௞௜  user cost for route k and period i  
subscript: c = conventional, f=flexible - 

௖௩ܥܵ
௞௜, ௙௩ܥܵ

௞௜ user in-vehicle cost for route k and period i  
subscript: c = conventional, f=flexible - 

௖௪ܥܵ
௞௜ , ௙௪ܥܵ

௞௜  user waiting cost for route k and period i  
subscript: c = conventional, f=flexible - 

௖௫ܥܵ
௞௜ user access cost for route k and period i (conventional only) - 

௖ܥܵܶ , ௙ܥܵܶ  total service cost over all routes and periods   
subscript: c = conventional, f=flexible - 

 - ௞௜ time duration for route k and period iݐ
u average number of passengers per stop for flexible bus 1.2 

௖ܸ
௜ local service speed for conventional bus in period i (miles/hr) 20 at i =1 

30 at i = 2,3,4 

௙ܸ
௜ local service speed for flexible bus in period i (miles/hr) 18 at i =1 

25 at i = 2,3,4 
௫ܸ average passenger access speed (mile/hr) 2.5 

,௩ݒ ,௪ݒ  ௫ value of in-vehicle time, wait time and access time ($/passenger hr) 5, 12, 12ݒ

 express speed/local speed ratio for conventional bus conventional bus = 1.8 ݕ
flexible  bus = 2.0 

 - non-stop ratio = local non-stop speed/local speed; same values as y ݖ
Ø constant in the flexible bus tour equation (Daganzo, 25) for flexible bus 1.15 

* 
superscript indicating optimal value 

subscript: c = conventional, f=flexible 
- 

 

For both conventional and flexible buses 

All regional areas are assumed to be similar  (i.e. rectangular shaped, with length  L and width  
W). However, local regions may have different line haul distances Jk (miles, in route k) 
connecting a terminal and local regions’ nearest corner. .  

a) The demand is fixed with respect to service quality and price.  
b) The demand is uniformly distributed over space within the local regions and over time 

within each specified period.  
c) The bus size (Sc for conventional, Sf  for flexible) is uniform throughout a system.  
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d) The estimated average waiting time of passengers is equal to half the headway (hc for 
conventional, hf  for flexible).  

e) Bus layover time is negligible.  
f) Within the local region, the average speed ( ௖ܸ

௜ for conventional bus, ௙ܸ
௜  for flexible bus) 

includes stopping times. 
g) External costs are assumed to be negligible. 

 

For conventional bus only 

a) The local region is divided into N parallel zones with a width r=W/N for conventional bus, 
as shown in Figure 1. Local routes branch from the line haul route segment to run along the 
middle of each zone, at a route spacing r=W/N. 

b) Qki trips/mile2/hour, entirely channeled to (or through) the single terminal, are  uniformly 
distributed over the service area.  

c) In each round trip, as shown in Figure 1, buses travel from the terminal a line haul distance 
Jk at non-stop speed y ௖ܸ

௜ to a corner of the local regions, then travel an average of W/2 
miles at local non-stop speed z ௖ܸ

௜ from the corner to the assigned zone, then run a local 
route of length L at local speed ௖ܸ

௜  along the central axis of the zone while stopping for 
passengers every d miles, and then reverse the above process in returning to the terminal. 

 

For flexible bus only 

a) The local region is divided into N’ equal zones, each having an optimizable zone area 
A=LW/N’. The zones should be “fairly compact and fairly convex”. 

b) Buses travel from the terminal line haul distance Jk at non-stop speed y ௙ܸ
௜ and an average 

distance (L+W)/2 miles at local non-stop speed z ௙ܸ
௜ to the center of each zone. They collect 

(or distribute) passengers at their door steps through an efficiently routed tour of n stops 
and length ܦ௖

௞௜  at local speed ௙ܸ
௜ ௖ܦ .

௞௜ is approximated by (24), in which  ܦ௖
௞௜ ൌ ,nA√׎

and ׎ ൌ 1.15 for the rectilinear space assumed here (25). The values of n and ܦ௖
௞௜  are 

endogenously determined. To return to their starting point the buses retrace an average of 
(L+W)/2 miles at z ௙ܸ

௜ miles per hour and J k miles at y ௙ܸ
௜ miles per hour. 

c) Buses operate on preset schedules with flexible routing designed to minimize each tour 
distance ܦ௖

௞௜ .  
d) Tour departure headways are equal for all zones in the local region and uniform within 

each period.  
 

Service Cost  
In terms of service cost for conventional and flexible bus, we consider bus operating cost, user 
in-vehicle cost, user waiting cost, and user access cost. Since flexible bus provides door-to-door 
service, its user access cost is negligible.  
 
Conventional Bus Cost 
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Conventional bus cost for route k and period i, ܵܥ௖
௞௜, includes operating cost, user in-vehicle cost, 

user waiting cost, and user access cost, as shown in Equation (1).  
 
௖ܥܵ 

௞௜ ൌ
஽ೖௐቀ௔ା௕ௌ೎ ቁ

௥ ௏೎
೔௛೎

ೖ೔ ൅ ௩ೡ௅ௐொೖ೔ெೖ

௏೎
೔ ൅ ௩ೢ௅ௐொೖ೔௛೎

ೖ೔

ଶ
൅ ௩ೣ௅ௐொೖ೔ሺ௥ ାௗሻ

ସ௏ೣ
    (1) 

 
Detailed derivations and explanations for equation (1) are placed in Appendix 1. Total 
conventional bus cost over all routes and all periods, ܶܵܥ௖ , can be expressed as:  
 
௖ܥܵܶ  ൌ ∑ ∑ ሼܵܥ௖

௞௜ ൈ ௞௜ሽூݐ
௜ୀଵ

௄
௞ୀଵ  

ൌ ∑ ∑ ቊቆ
஽ೖௐቀ௔ା௕ௌ೎ ቁ

௥ ௏೎
೔௛೎

ೖ೔ ൅ ௩ೡ௅ௐொೖ೔ெೖ

௏೎
೔ ൅ ௩ೢ௅ௐொೖ೔௛೎

ೖ೔

ଶ
൅ ௩ೣ௅ௐொೖ೔ሺ௥ ାௗሻ

ସ௏ೣ
ቇ ൈ ௞௜ቋூݐ

௜ୀଵ
௄
௞ୀଵ    (2) 

 
Flexible Bus Cost 

Similarly, flexible bus cost consists of bus operating cost, user in-vehicle cost and user waiting 
cost. Service cost for route k, in period i, ܵܥ௙

௞௜, is formulated as follows:  
 

௙ܥܵ 
௞௜ ൌ

௅ௐቀ௔ା௕ௌ೑ ቁሺ஽೑ାØ஺כඨೂೖ೔೓೑
ೖ೔

ೠ ሻ

஺ ௏೑
೔௛೑

ೖ೔ ൅
௩ೡ௅ௐொೖ೔ሺ஽೑ାØ஺כඨೂೖ೔೓೑

ೖ೔

ೠ ሻ

ଶ௏೑
೔ ൅

௩ೢ௅ௐொೖ೔௛೑
ೖ೔

ଶ
   (3) 

 
Details for equation (3) are provided in Appendix 2. Total service cost over all routes and 
periods, ܶܵܥ௙ , is then:  
 
௙ܥܵܶ  ൌ ∑ ∑ ൛ܵܥ௙

௞௜ ൈ ௞௜ൟூݐ
௜ୀଵ

௄
௞ୀଵ  

 ൌ ∑ ∑

ە
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௩ೡ௅ௐொೖ೔ሺ஽೑ାØ஺ ඨೂೖ೔೓೑

ೖ೔

ೠ ሻ

ଶ௏೑
೔ ൅

௩ೢ௅ௐொೖ೔௛೑
ೖ೔

ଶ

ی

ۋ
ۊ

ൈ ௞௜ݐ

ۙ
ۖ
ۘ

ۖ
ۗ

ூ
௜ୀଵ

௄
௞ୀଵ    (4) 

 

Capital Cost  
After headways are optimized for each period, they and the round trip times determine fleet size. 
Thus, with optimized bus sizes, we have the required fleet matrix for each route and period. For 
capital cost, which is our fixed cost component, the required fleet size is the largest of the fleet 
sizes that are required to provide service in any periods for all local regions (i.e. largest value 
among ∑ ௞ଵ௄ܨ

௞ୀଵ , ∑ ௞ଶ௄ܨ
௞ୀଵ , …, ∑ ௞ூ௄ܨ

௞ୀଵ ) over all periods. Here, the capital cost units are $/day.  

MULTI-DIMENSIONAL OPTIMIZATION PROBLEM FOR VARIABLE-MODE BUS 
OPERATIONS WITH MIXED FLEETS 
In this section, we present a solution method for this multi-dimensional optimization problem.  
This is a nonlinear integer optimization problem with integer bus sizes (i.e. integer number of 
seats/bus) and integer fleets. To ensure an integer fleet size in any period, we should have integer 
numbers of zones for both conventional and flexible bus. (These are necessary conditions for 
having integer fleets). Then, we take into account the route spacing (for conventional bus) and 
service area (for flexible bus) because these two variables affect the number of zones in local 
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regions. Thus, in this problem, we have four decision variables, Conventional Bus Size, Flexible 
Bus Size, Route Spacing (for conventional bus) and Service Area (for flexible bus). 
 
Preliminary Analysis  

Upper/Lower Bounds for Conventional and Flexible Bus Sizes 

Maximum and minimum bus sizes can be estimated with the cost formulation. In any given 
period, maximum allowable headways for conventional and flexible bus are as follows:  
 
 ݄௖ ௠௔௫

௞௜ ൌ ௌ೎௟೎
௥௅௙ொೖ೔  (for conventional bus )       (5) 

 ݄௙ ௠௔௫
௞௜ ൌ

ௌ೑௟೑

஺ொೖ೔   (for flexible bus)         (6) 

 
 By substituting equations (5) and (6) into (1) and (3), respectively, we obtain equations (7) 
and (8). 
  
௖ܥܵ 

௞௜ ൌ ஽ೖ൫௔ା௕ௌ೎
ೖ೔൯௅ௐ௙ொೖ೔

௏೎
೔ௌ೎

ೖ೔௟೎
൅ ௩ೡ௅ௐொೖ೔ெೖ

௏೎
೔ ൅ ௩ೢௐௌ೎

ೖ೔௟೎
ଶ௥௙

൅ ௩ೣ௅ௐொೖ೔ሺ௥ାௗሻ
ସ௏ೣ

     (7) 

௙ܥܵ 
௞௜ ൌ

௅ௐொೖ೔஽೑ሺ௔ା௕ௌ೑
ೖ೔ሻ

௏೑
೔ௌ೑

ೖ೔௟೑
൅

Ø௅ௐொೖ೔ሺ௔ା௕ௌ೑
ೖ೔ሻට஺ ௨ௌ೑

ೖ೔௟೑ൗ

௏೑
೔ ൅

௩ೡ௅ௐொೖ೔஽೑

ଶ௏೑
೔ ൅

௩ೡ௅ௐொೖ೔Øට஺ௌ೑
ೖ೔௟೑ ௨⁄

ଶ௏೑
೔ ൅

௩ೢ௅ௐௌ೑
ೖ೔௟೑

ଶ஺
 (8) 

 
In equation (7), conventional bus cost is a function of one decision variable, namely the bus size 
ܵ௖ .  In other words, since we can assume that we know all the other input values except bus size, 
we optimize bus size with the given information by taking the first derivative of service cost 
௖ܥܵ

௞௜ with respect to bus size ܵ௖ . Then, the optimized bus size is: 
 
 ܵ௖

௞௜ ൌ  ௙
௟೎

ටଶ௔௥஽ೖ௅ொೖ೔

௩ೢ௏೎
೔          (9) 

 
 In equation (9), the optimized bus size for minimizing service cost is determined by 
round travel distance ܦ௞, demand density ܳ௞௜, and speed ௖ܸ

௜. Equation (9) can be rewritten as:  
 
 ܵ௖

௞௜ ൌ ൜௙
௟೎

ටଶ௔௥௅
௩ೢ

ൠ ට஽ೖொೖ೔

௏೎
೔                   (10) 

 
 Therefore, using input parameters such as demand, bus speed, and round travel distance, 
we can determine upper and lower bounds for optimized bus sizes.  
 

 ܵ௖
௨௣௣௘௥ ൌ ݔܽ݉

ە
ۖ
۔

ۖ
௖ܵۓ

஺ଵ ܵ௖
஻ଵ

ܵ௖
஺ଶ ܵ௖

஻ଶ
ܵ௖

஼ଵ ܵ௖
஽ଵ

ܵ௖
஼ଶ ܵ௖

஽ଶ

ܵ௖
஺ଷ ܵ௖

஻ଷ

ܵ௖
஺ସ ܵ௖

஻ସ
ܵ௖

஼ଷ ܵ௖
஽ଷ

ܵ௖
஼ସ ܵ௖

஽ସ
ۙ
ۖ
ۘ

ۖ
ۗ

        (11) 

  ܵ௖
௟௢௪௘௥ ൌ ݉݅݊

ە
ۖ
۔

ۖ
௖ܵۓ

஺ଵ ܵ௖
஻ଵ

ܵ௖
஺ଶ ܵ௖

஻ଶ
ܵ௖

஼ଵ ܵ௖
஽ଵ

ܵ௖
஼ଶ ܵ௖

஽ଶ

ܵ௖
஺ଷ ܵ௖

஻ଷ

ܵ௖
஺ସ ܵ௖

஻ସ
ܵ௖

஼ଷ ܵ௖
஽ଷ

ܵ௖
஼ସ ܵ௖

஽ସ
ۙ
ۖ
ۘ

ۖ
ۗ

        (12) 
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In optimizing bus size for flexible bus in a single period, we use the first derivative of the 
flexible bus cost function (equation (8)) with respect to bus size ௙ܵ

௞௜  . Unfortunately, that 
derivative is difficult to solve analytically since it leads to a 4th order equation. Thus, we 
incorporate here a built-in solver from MATLAB Version 7.9. A function named fminbnd finds 
the minimum value in a nonlinear minimization problem within given search boundaries. Thus, 
we optimize the bus size for any period by solving equation (8) with the nonlinear optimization 
solver. Similarly to the conventional bus size matrices in equation (11, 12), the upper and lower 
bounds of bus size for flexible bus are given in equations (13, 14).  
 

 ௙ܵ
௨௣௣௘௥ ൌ ݔܽ݉

ە
ۖ
۔

ۖ
ۓ ௙ܵ

஺ଵ
௙ܵ
஻ଵ

௙ܵ
஺ଶ

௙ܵ
஻ଶ

௙ܵ
஼ଵ

௙ܵ
஽ଵ

௙ܵ
஼ଶ

௙ܵ
஽ଶ

௙ܵ
஺ଷ

௙ܵ
஻ଷ

௙ܵ
஺ସ

௙ܵ
஻ସ

௙ܵ
஼ଷ

௙ܵ
஽ଷ

௙ܵ
஼ସ

௙ܵ
஽ସۙ

ۖ
ۘ

ۖ
ۗ

        (13) 

 ௙ܵ
௟௢௪௘௥ ൌ ݉݅݊

ە
ۖ
۔

ۖ
ۓ ௙ܵ

஺ଵ
௙ܵ
஻ଵ

௙ܵ
஺ଶ

௙ܵ
஻ଶ

௙ܵ
஼ଵ

௙ܵ
஽ଵ

௙ܵ
஼ଶ

௙ܵ
஽ଶ

௙ܵ
஺ଷ

௙ܵ
஻ଷ

௙ܵ
஺ସ

௙ܵ
஻ସ

௙ܵ
஼ଷ

௙ܵ
஽ଷ

௙ܵ
஼ସ

௙ܵ
஽ସۙ

ۖ
ۘ

ۖ
ۗ

        (14) 

 
From bus size optimization for a single period, we obtain upper bound and lower bounds for 
conventional and flexible buses. These boundaries give us the bus size arrays:  
 

Conventional Bus Size Array = {ܵ௖
௨௣௣௘௥, ܵ௖

௨௣௣௘௥ െ 1, … , ܵ௖
௟௢௪௘௥ ൅ 1, ܵ௖

௟௢௪௘௥ሽ   (15) 
Flexible Bus Size Array = { ௙ܵ

௨௣௣௘௥, ௙ܵ
௨௣௣௘௥ െ 1, … , ௙ܵ

௟௢௪௘௥ ൅ 1, ௙ܵ
௟௢௪௘௥ሽ    (16) 

 
These arrays in equations (15, 16) will be used by the solution algorithm to find the total cost.  
 
Upper/Lower Bounds for Route Spacing and Service Area 

Similarly, we seek integer numbers of zones for both modes and integer fleets for each zone. In 
other words, the number of zones in each local region helps determine route spacing and service 
area. For instance, the minimum number of zones for both modes is one. In this case, route 
spacing and service area per bus are automatically determined (i.e. from equations r = W/N and 
A=LW/N’). Conversely, if we have too many zones (i.e. requiring too many buses), bus service 
would  be inefficient. This gives us the minimum route spacing and minimum service area (and 
the corresponding maximum number of zones for services) for avoiding unnecessary search 
iterations.  
  For instance, in our numerical analysis, we set the minimum route spacing and minimum 
service area (i.e. size of zone) as 0.5 mile and 2 mile2, respectively. Thus, a local region may be 
divided into one (when route spacing is equal to width of region) to 8 (when route spacing is 0.5 
mile) equal zones. Similarly, service area 2 mile2 says that the number of zones for flexible 
service is from 1 zone to 10 zones. These values for route spacing and service area are used to 
optimize service cost with integer fleets.  
 Therefore, route spacing and service area combinations are presented below. In 
parentheses, the first number represents the number of zones and the second specifies route 
spacing in miles (or service area in mile2).  
  
 Conventional Mode Route Spacing Combinations  
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= {(1, 4.0), (2, 2.0), (3, 1.33), (4, 1.0), (5, 0.8), (6, 0.67), (7, 0.57), (8, 0.5)}   (17) 
 

 Flexible Mode Service Area Combinations  
 = {(1, 20.0), (2, 10.0), (3, 6.67), (4, 5), (5, 4), (6, 3.33), (7, 2.86), (8, 2.5), (9, 2.22), (10, 2.0)}  (18) 
 

 Route spacing and service area combinations will be used with bus size arrays to 
optimize total cost.  
 
Demand Threshold Matrix over Routes and Periods 

Anticipating that conventional bus has lower average cost than flexible bus at high demand 
densities, and vice versa, we must find the threshold demand for route k in period i, above which 
conventional service is preferable and below which flexible service is preferable. This threshold 
is obtained  by setting equations (7) and (8)  to be equal:  
 

 ܳ௧
௞௜ ൌ

ೡೢ
మ ൝

ೄ೑ ೗೑
ಲ ିೄ೎ ೗೎

ೝ೑ಽ ൡ

൞
ವೖ೑ቀೌశ್ೄ೎ ቁ

ೇ೎೔ ೄ೎ ೗೎
ି

ቀೌశ್ೄ೑ ቁሺವ೑శØටಲೄ೑ ೗೑ ೠൗ ሻ

ೇ೑
೔ ೄ೑ ೗೑

ାೡೡಾೖ

ೇ೎೔
ି

ೡೡሺವ೑శØටಲೄ೑ ೗೑ ೠൗ

మೇ೑
೔ ାೡೣሺೝశ೏ሻ

రೇೣ
ൢ

    (19) 

 
Using equation (19), for any combination of decision variables (Sc, Sf, r and A), we determine the 
demand threshold matrix for selecting the conventional or flexible mode. 
 
Solution Search Algorithm  
We minimize total cost by optimizing four decision variables, namely conventional bus size, 
flexible bus size, conventional bus route spacing, and flexible bus service area. The flow chart 
for the solution search algorithm is shown in Figure 2.  
 From equations (15 ~18), we have feasible search boundaries for four decision variables. 
With any combinations of these four variable values, we compute service cost and capital cost in 
internal loop. We keep searching numerically for the minimum cost solution until we check all 
feasible search boundaries of decision variables while updating results when finding a lower total 
cost.  
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FIGURE 2 Search Algorithm 

 

MUMERICAL ANALYSIS  
To confirm that the proposed method minimizes cost effectively, we analyze a numerical case 
and compare VMBOMF to a single fleet conventional bus and a single fleet flexible bus. 
Furthermore, we conduct sensitivity analyses for important input parameters. In the following 
sections, a numerical case study and sensitivity analyses are presented.  
 
Baseline Case Study  
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Inputs for Baseline Case Study 

In the baseline numerical case, we consider four rectangular local regions, each 4 x 5 miles, and 
each with four periods (i.e. K = 4 and I = 4). Demand, service time and line-haul distance are 
presented in Table 2. All other required input parameters are presented in Table 1.  
 
TABLE 2 Demand, Service Time, and Line-haul Distance 

Demand (trips/mile2/hour)
Region 

Period A B C D 

1 50 45 60 55 
2 30 35 40 40 
3 10 15 30 15 
4 5 7.5 10 5 

Time(hours) 
Region 

Period A B C D 

1 4 4 4 4 
2 6 6 6 6 
3 8 8 8 8 
4 6 6 6 6 

Region A B C D 
Line-haul Distance (miles) 10 15 20 15 
  
Results of Baseline Case Study 

The optimized headways and fleet assignments used to minimize total cost for VMBOMF are 
presented in Table 3. In Region A, conventional bus operates  only during Period 1. Flexible bus 
covers Periods 2 ~ 4. In Region C, conventional bus covers three periods, 1 to 3. Only Period 4 is 
served by flexible bus. For Regions B and D, conventional bus covers periods 1 and 2 while 
flexible bus serves  Periods 3 and 4.  
 
TABLE 3 Baseline Case Results 

 Conventional Bus Headway (hours) Flexible Bus Headway (hours) 
Region 

Period A B C D  A B C D  

1 0.1795 0.2063 0.1566 0.1699  - - - -  
2 - 0.1926 0.1997 0.1834  0.0889 - - -  
3 - - 0.2296 -  0.2323 0.1765 - 0.1765  
4 - - - -  0.3579 0.3000 0.2700 0.3904  
 Conventional Bus Fleet Assignment (buses) Flexible Bus Fleet Assignment (buses) 
Region 

Period A B C D Sum A B C D Sum 

1 26 28 44 34 132 0 0 0 0 0 
2 0 20 23 21 64 35 0 0 0 35 
3 0 0 20 0 20 13 21 0 21 55 
4 0 0 0 0 0 8 12 16 9 45 
 Conventional Bus Cost ($/hour) Flexible Bus Cost ($/hour) 
Region 

Period A B C D  A B C D  

1 5,833.0 6,201.0 9,005.5 7,329.9  0.0 0.0 0.0 0.0  
2 0.0 3,998.4 4,979.6 4,452.4  3,051.8 0.0 0.0 0.0  
3 0.0 0.0 3,950.9 0.0  1,218.9 1,949.9 0.0 1,949.9  
4 0.0 0.0 0.0 0.0  722.2 1,123.1 1,581.6 829.4  
 Service Cost × Time 
Region 

Period A B C D 
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1 23,332.0 24,803.9 36,022.2 29,319.6 
2 18,310.9 23,990.4 29,877.7 26,714.5 
3 9,751.4 15,599.5 31,607.1 15,599.5 
4 4,333.2 6,738.9 9,489.6 4,976.4 

Total Service Cost ($/day)   =  310,466.6 

 
From fleet assignment results in Table 3, we compute capital cost for conventional and 

flexible bus over all time periods. For conventional service, we need at least 132 buses. Similarly, 
flexible bus requires 55 buses. With the capital cost function (Bc = ac + bc×S), we compute 
capital cost for both modes (i.e. CCc = (100+0.5×47) $/bus day ×132 buses= 16,302 $/day, CCf 
= (100+0.5×18) $/bus day × 55 buses = 5,995 $/day). Total capital cost is then $22,297/day. 
Service cost for routes and periods are also provided in Table 3. After multiplying service cost 
by the number of hours in each period, we obtain the service cost matrix. Hence, the total service 
cost is 310,467$/day using VMBOMF. Total cost (including capital cost) is $332,764/day. 

In Table 4, VMBOMF provides lower total cost than a single fleet conventional bus, or a 
single fleet flexible bus. Optimized bus sizes for VMBOMF are 47 seats/bus for conventional 
and 18 seats/bus for flexible bus. Additionally, route spacing is 1 mile for conventional bus and 
service area is 6.67 mile2 for flexible bus service. 

We also develop models that  compute total cost for single-fleet conventional flexible bus 
services. In comparisons with single fleet, single mode services we note that VMBOMF  reduces 
total cost. As shown in Table 4, VMBOMF, saves $537 (0.16%) and $23,483(6.59%) per day 
compared to single fleet conventional and flexible services, respectively. In this baseline case 
study, we confirm that VMBOMF can  reduce total cost compared to  single fleet & single mode 
services.  

 
TABLE 4 Total Cost Comparisons with Single Fleet Operations 

 VMBOMF Single Fleet Conv. Bus Single Fleet Flex. Bus 
Bus Size (seats/bus) 47/18 47 29 

Route Spacing / Service Area 1.0 / 6.67  1.0  2 
Fleet Size (buses) 132 / 55 132  255  

Capital Cost ($/day) 22,297 16,302 29,198 
Total Cost ($/day) 332,764 333,301 356,247 

Total Cost Saving (%) - 0.16 6.59 
 
 
Sensitivity Analysis   
In this section, we explore how the relative advantages of VMBOMF can be affected by demand 
variation over time. Table 5 show input values for two sensitivity analysis cases.  
 
TABLE 5 
Input 
Values for 
Sensitivity 
Analysis 

Case I 

Case II 

 Demand (trips/mile2/hour) Time(hours) 
Region 

Period A B C D A B C D 

1 10 9 12 11 2 2 2 2 
2 6 7 8 8 4 4 4 4 
3 2 3 6 3 4 4 4 4 
4 1 2 2 1 14 14 14 14 

 
Sensitivity Analysis Results 
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In Case 1, we check how an 80% reduction in demand density (to 20 % of baseline demand) 
affects total cost and the optimized decision variables. As shown in Table 6, VMBOMF 
decreases total costs by about 2.40% and 1.96% compared to single mode systems.  
 
TABLE 6 Sensitivity Analysis Results 

 Case 1 Result 
 VMBOMF Single Fleet Conv. Bus Single Fleet Flex. Bus 

Bus Size (seats/bus) 38/18 
32 23 

Route Spacing / Service Area 2/10 
2 10 

Fleet Size (buses) 22/ 46 
40 75 

Capital Cost ($/day) 2499 / 5014 
4640 8363 

Total Service Cost ($/day) 83,626  
88,737 84,596 

Total Cost ($/day) 91,139 
93,377 92,959 

Total Cost Saving (%) - 
2.40 1.96 

 Case 2 Result  

 VMBOMF Single Fleet Conv. Bus 
Single Fleet Flex. Bus 

Bus Size (seats/bus) 53/21 
53 30 

Route Spacing / Service Area 1/10 
1.33 5 

Fleet Size (buses) 122/53 
117 258 

Capital Cost ($/day) 15,433 / 5,857 
14801 29,670 

Total Service Cost ($/day) 218,683  
228,340 230,215 

Total Cost ($/day) 239,973 
243,141 259,885 

Total Cost Saving (%) - 
1.30 7.66 

 
 Case 2 explores the sensitivity of results to the distribution of demand over time, 
considering relatively long periods with low demand density, as shown in Table 5. In results 
provided in Table 6, with longer periods of low demand, VMBOMF saves  1.30% and 7.66% in 
total cost compared to single fleet conventional and flexible services, respectively. The 
sensitivities of costs and other performance measure to other important parameters are provided 
in Kim and Schonfeld (26). 

CONCLUSIONS   

Summary and Contribution   
In this study, we analyze VMBOMF (Variable Mode Bus Operation with Multiple Fleets) for 
multiple local regions. To solve our nonlinear integer problem, we propose a  solution algorithm 
based on analytic optimization of variables and feasible search regions. Results confirm that 
VMBOMF can reduce costs compared to single fleet & single mode services (such as single fleet 
conventional or single fleet flexible bus). The baseline case shows that 0.16 % and 6.59 % 
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savings are achievable compared to single fleet conventional and flexible services, respectively. 
In the baseline results the total cost of VMBOMF is close to that of single fleet conventional 
service because the demand density is fairly high. Sensitivity analysis shows that the relative 
advantages of VMBOMF increase when demand densities decrease and last longer.  
 
Extensions    
Various additional questions seem worth exploring. Here we only present two sensitivity 
analysis cases. Many other interesting input parameter variations such as region length, line haul 
distance, bus speed, walking speed, bus stop spacing (for conventional bus), unit costs and 
passenger time values might also be considered. In this paper, we assume that all trips go either 
from local regions to terminal or from terminal to local area. Comparisons of VMBOMF with 
variable-mode & single-fleet services and single-mode & multiple-fleet services are also 
desirable. For travel among the local regions an optimization model should also seek to 
coordinate headways and minimize transfer delays at the major terminal.  
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APPENDIX 1 Conventional Bus Cost Formulations    
Kim and Schonfeld (2011a)  presents conventional service cost formulations for a one route bus 
system in analyzing the variable-type bus service concept. In this paper, we modify its 
formulations to extend them to multiple local regions.  
 As shown in Figure 1, buses travel from the terminal a line haul distance Jk at non-stop 
speed y ௖ܸ

௜ to a corner of the service area, then travel an average of W/2 miles at local non-stop 
speed z ௖ܸ

௜ from the corner to the assigned zone, run a distribution route of length L at local speed 
௖ܸ
௜ along the central axis of the zone while stopping for passengers every d miles, and the reverse 

the process in returning. Therefore, the buses’ average round trip time is:  
 
 ܴ௖

௞௜ ൌ ଶ௃ೖ

௬௏೎
೔ ൅ ௐ

௭௏೎
೔ ൅ ଶ௅

௏೎
೔           (A1-1) 

 
This round trip time can differ among routes and periods. The previous study (Kim and 
Schonfeld, 2011a) does not consider travel speed variations over time. Equation (A1-1) can be 
re-written as:  
 
 ܴ௖

௞௜ ൌ ቄଶ௃ೖ

௬
൅ ௐ

௭
൅ ቅܮ2 ௖ܸ

௜ൗ           (A1-2) 
 
In equation (A1-2), the expression in parentheses represents an equivalent bus round trip distance, 
Dk.  
 The total cost of conventional bus service (in route k, at period i) includes the operator 
cost ܵܥ௖௢

௞௜ and the user cost ܵܥ௖௨
௞௜. To determine operator cost, we determine the fleet size N, which 

is the total bus round trip time divided by the headway. With the equivalent bus round travel 
distance Dk, a controllable directional split factor f, and conventional bus speed Vc, we obtain the 
required fleet size ܨ௖

௞௜: 
  
௖ܨ 

௞௜ ൌ ஽ೖௐ
௥௛೎

ೖ೔௏೎
೔  ,where ܦ௞ ൌ ௞ܬ2 ⁄ݕ ൅ ܹ ⁄ݖ ൅  (A1-3)      ܮ2

 
 The hourly conventional bus operator cost ܵܥ௖௢

௞௜ is the required fleet size multiplied by bus 
operating cost: 
 
௖௢ܥܵ 

௞௜ ൌ ௖ܨ
௞௜ܤ ൌ  ஽ೖௐ

௥௛೎
ೖ೔௏೎

೔ ሺܽ ൅ ܾܵ௖ሻ        (A1-4) 

 
The hourly user cost for the conventional bus service at route k & period i, ܵܥ௖௨

௞௜ is the sum of in-
vehicle cost ܵܥ௖௩

௞௜, waiting cost ܵܥ௖௪
௞௜ , and access cost ܵܥ௖௫

௞௜: 
 
௖௨ܥܵ 

௞௜ ൌ ௖௩ܥܵ
௞௜ ൅ ௖௪ܥܵ

௞௜ ൅ ௖௫ܥܵ
௞௜        (A1-5) 

 
The hourly in-vehicle cost for the conventional service is then: 
 
௖௩ܥܵ 

௞௜ ൌ ௖ݐܹܳܮ௩ݒ
௞௜         (A1-6) 

 
The average travel time ݐ௖

௞௜ for passenger trip is formulated as: 
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௖ݐ
௞௜ ൌ ௃ೖ

௬௏೎
೔ ൅ ௐ

ଶ௭௏೎
೔ ൅ ௅

ଶ௏೎
೔ ൌ ெೖ

௏೎
೔   ,where Mk=Jk/y + W/2z + L/2          (A1-7) 

 
Then equation (A1-7) can be written as:  
 
௖௩ܥܵ 

௞௜ ൌ ௞௜ܹܳܮ௩ݒ ெೖ

௏೎
೔           (A1-8) 

 
We assume the average waiting time is half the headway. Therefore, the hourly user waiting cost 
for conventional system ܵܥ௖௪

௞௜ is: 
 
௖௪ܥܵ 

௞௜ ൌ ௞௜ܹܳܮ௪ݒ ௛೎
ೖ೔

ଶ
         (A1-9) 

 
 Since the spacing between adjacent branches of local bus service is r, and since service 
trip origins (or destinations) are uniformly distributed over the local region, the average access 
distance to the nearest route is one-fourth of route spacing, r/4. Similarly, the access distance 
alongside the route to the nearest transit stop is one-fourth of the bus stop spacing, i.e., d/4. 
Therefore, the hourly access cost for the conventional bus system ܵܥ௖௫

௞௜ is:  
 

௖௫ܥܵ 
௞௜ ൌ ௩ೣ௅ௐொೖ೔ሺ௥ାௗሻ

ସ௏ೣ
         (A1-10) 

 
The total service cost for the conventional system ܵܥ௖௨

௞௜ is the sum of operating cost and user cost:  
  

௖௨ܥܵ 
௞௜ ൌ ஽ೖௐ

௥௛೎
ೖ೔௏೎

೔ ሺܽ ൅ ܾܵ௖ሻ ൅ ௞௜ܹܳܮ௩ݒ ெೖ

௏೎
೔ ൅ ݒ௪ܹܳܮ௞௜ ௛೎

ೖ೔

ଶ
 ൅ ௩ೣ௅ௐொೖ೔ሺ௥ାௗሻ

ସ௏ೣ
   (A1-11) 

 
Since we consider multiple periods for bus operations, the optimized headway should be smaller 
value between the maximum allowable headway and minimum cost headway. The maximum 
allowable headway for route k and period i is:  
 
 ݄௖ ௠௔௫

௞௜ ൌ ௌ೎௟೎
௥௅௙ொೖ೔          (A1-12) 

 
The minimum cost headway can be obtained from the partial derivative of equation (A1-11) with 
respect to headway;  
 
 ݄௖ ௠௜௡

௞௜ ൌ  ටଶ஽ೖሺ௔ା௕ௌ೎ሻ
௩ೢ௅௥ொೖ೔௏೎

೔           (A1-13) 

 
Then, optimal headway is then: 
 
 ݄௖ ௢௣௧

௞௜ ൌ  min ቊ ௌ೎௟೎
௥௅௙ொೖ೔ , ටଶ஽ೖሺ௔ା௕ௌ೎ሻ

௩ೢ௅௥ொೖ೔௏೎
೔ ቋ                     (A1-14) 

 
 The optimized headway obtained in equation (A1-14) applies to equation (A1-3) for optimizing 
the conventional service fleet size for route k and period i (ܨ௖ ௢௣௧

௞௜ ൌ ஽ೖௐ
௥௛೎ ೚೛೟

ೖ೔ ௏೎
೔). However, this fleet 

size must be rounded off to an integer value. The modified headway ݄௖
௞௜כ can similarly obtained 



18 
 

by using equation (A1-3). All such modified headways should be equal to or below the 
maximum allowable headway in equation (A1-12). 
 The service cost for route k and in period i, is finally formulated by substituting modified 
headway into equation (A1-3).  
 
௖ܥܵ 

௞௜כ ൌ  ஽ೖௐ
௥௛೎

ೖ೔כ௏೎
೔ ሺܽ ൅ ܾܵ௖ሻ ൅ ௞௜ܹܳܮ௩ݒ ெೖ

௏೎
೔ ൅ ݒ௪ܹܳܮ௞௜ ௛೎

ೖ೔כ

ଶ
 ൅ ௩ೣ௅ௐொೖ೔ሺ௥ାௗሻ

ସ௏ೣ
     (A1-15) 

APPENDIX 2 Flexible Bus Cost Formulations    
The flexible cost formulation introduced by Chang and Schonfeld (2) considers only one-
directional service (i.e. only collecting OR distributing passengers). Here, we consider 2-
directional demand (i.e. pick up and drop off passengers within one tour). Since the formulation 
from Chang and Schonfeld (2) applies for only one  local region, we modify some notation and 
improve equations to consider multiple local regions in the flexible service formulation even 
though most of them are similar to those by Chang and Schonfeld (2)   
 For flexible service such as Dial-A-Ride, the efficient tour distance Dc for visiting 
randomly and independently dispersed n points among area A is approximately (24, 25)): 
 
௖ܦ  ൌ Ø√݊ܣ           (A2-1) 
 
 For a grid network (i.e. rectilinear space), a Ø value of 1.15 is appropriate for analyzing 
flexible service cost (25). In  equation (A2-1), n is the number of stops per tour, which is the 
hourly round trip demand in each zone ܳܣ௞௜ multiplied by service headway ݄௙

௞௜ and divided by 
number of passengers u per stop: 
 
 ݊ ൌ

஺ொೖ೔௛೑
ೖ೔

௨
          (A2-2) 

 
Substituting equation (A2-2) into (A2-1), we optimize the tour distance in service area A as: 
 

௖ܦ 
௞௜ ൌ Øට஺ொೖ೔௛೑

ೖ೔

௨
ܣ ൌ Øܣටொೖ೔௛೑

ೖ೔

௨
        (A2-3) 

 
Round travel time can be calculated as follows:  
 
 ௙ܴ

௞௜ ൌ 2 ൬௅ାௐ
ଶ௭௏೑

೔ ൅ ௃ೖ

௬௏೑
೔൰ ൅ ஽೎

ೖ೔

௏೑
೔ ൌ ሺ௅ାௐሻ ௭⁄ ାଶ௃ ௬⁄

௏೑
೔ ൅ ஽೎

ೖ೔

௏೑
೔ ൌ

஽೑
ೖା஽೎

ೖ೔

௏೑
೔       (A2-4) 

 
where, equivalent round travel distance ܦ௙

௞=(L+W)/z +2ܬ௞/y 
 
The fleet size is:  
 

௙ܨ 
௞௜ ൌ

௅ௐோ೑
ೖ೔

஺௛೑
ೖ೔ ൌ ௅ௐ

஺௛೑
ೖ೔

஽೑
ೖା஽೎

ೖ೔

௏೑
ೖ೔ ൌ

௅ௐሺ஽೑
ೖାØ஺ටொೖ೔௛೑

ೖ೔ ௨⁄ ሻ

௏ೞ஺௛೑
ೖ೔        (A2-5) 

 
The hourly flexible bus operator cost ܵܥ௙௢

௞௜  is the required fleet size multiplied by bus 
operating cost: 
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௙௢ܥܵ 
௞௜ ൌ ௙ܨ

௞௜ܤ ൌ  
௅ௐሺ஽೑

ೖାØ஺ටொೖ೔௛೑
ೖ೔ ௨⁄ ሻ

௏೑
ೖ೔஺௛೑

ೖ೔ ሺܽ ൅ ܾ ௙ܵሻ      (A2-6) 

 
The hourly user cost for the flexible bus service for route k & period i, ܵܥ௙௨

௞௜  is the sum of in-
vehicle cost ܵܥ௙௩

௞௜, and waiting cost ܵܥ௙௪
௞௜ : 

 
௙௨ܥܵ 

௞௜ ൌ ௙௩ܥܵ
௞௜ ൅ ௙௪ܥܵ

௞௜          (A2-7)  
 
The hourly in-vehicle cost for the flexible service is then: 
 

௙௩ܥܵ 
௞௜ ൌ ௞௜ܹܳܮ௩ݒ ோ೑

ೖ೔

ଶ
ൌ ௩ೡ௅ௐொೖ೔

ଶ

஽೑
ೖା஽೎

ೖ೔

௏೑
ೖ೔ ൌ ௩ೡ௅ௐொೖ೔

ଶ

஽೑
ೖାØ஺ටொೖ೔௛೑

ೖ೔ ௨⁄ ሻ

௏೑
ೖ೔     (A2-8) 

 
Assuming average waiting time is approximately half of the headway, the waiting cost ܵܥ௙௪

௞௜  is: 
 
௙௪ܥܵ 

௞௜ ൌ ௞௜ܹܳܮ ௪ݒ ௛೑
ೖ೔

ଶ
          (A2-9) 

 
The total service cost for the flexible bus operation ܵܥ௖௨

௞௜ is the sum of operating cost and user 
costs:  
 

௙ܥܵ 
௞௜ ൌ

௅ௐ൫௔ା௕ௌ೑൯ሺ஽೑
ೖାØ஺ටொೖ೔௛೑

ೖ೔ ௨⁄ ሻ

௏೑
ೖ೔஺௛೑

ೖ೔ ൅ ௩ೡ௅ௐொೖ೔

ଶ

஽೑
ೖାØ஺ටொೖ೔௛೑

ೖ೔ ௨⁄ ሻ

௏೑
ೖ೔ ൅ ݒ௪ܹܳܮ௞௜ ௛೑

ೖ೔

ଶ
   (A2-10)  

 
Since we consider multiple periods, the optimized headway should be (1) the maximum 

allowable headway OR (2) the minimum cost headway, whichever is smaller. The maximum 
allowable headway for route k and period i is:  

 
 ݄௙ ௠௔௫

௞௜ ൌ
ௌ೑௟೑

஺ொೖ೔          (A2-11) 
 
 The minimum cost headway can be obtained from the partial derivative equation (A2-10) 
with respect to headway ݄௙

௞௜. An analytically optimized solution with respect to headway for a 
one route bus service is provided in Kim and Schonfeld (22). However, since our problem here is 
a nonlinear minimization problem, and difficult to solve analytically, we here apply the function 
fminbnd in MATLAB Version 7.9 to find the minimum value. This function allows us to easily 
obtain the minimum cost headway ݄௙ ௠௜௡

௞௜ . Thus, the optimized headway for flexible service is:  
 
 ݄௙ ௢௣௧

௞௜ ൌ  ݉݅݊ ቄ
ௌ೑௟೑

஺ொೖ೔ , ݄௙ ௠௜௡
௞௜ ቅ        (A2-12) 

 
The optimized fleet size for flexible service is found by substituting equation (A2-12) into (A2-
5): 
 

௙ ௢௣௧ܨ 
௞௜ ൌ

௅ௐሺ஽೑
ೖାØ஺ටொೖ೔௛೑ ೚೛೟

ೖ೔ ௨⁄ ሻ

௏ೞ஺௛೑ ೚೛೟
ೖ೔          (A2-13) 
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This equation (A2-13), similarly to conventional service fleet size, must yield an  integer value. 
Therefore, we round off fleet size to an integer value, and then check if modified headway 
violates maximum allowable headway. If modified headway violates maximum allowable 
headway, we round up fleet size to have integer number of buses. Modified headway denoted as 
݄௙

௞௜כ provides minimum total service cost with integer fleet size.  
 
 Minimum service cost with integer fleet for flexible bus operation is obtained by 
applying modified headway into equation (A2-10):  
 

௙ܥܵ 
௞௜כ ൌ

൫௔ା௕ௌ೑൯ሺ஽೑ܹܮ
ೖ൅Øܣටொೖ೔݄݂

כ݅݇ ൗݑ ሻ

௏೑
ೖ೔݂݄ܣ

כ݅݇ ൅ ௩ೡ௅ௐொೖ೔

ଶ

஽೑
ೖାØ஺ටொೖ೔݄݂

כ݅݇ ௨ൗ ሻ

௏೑
ೖ೔ ൅ ݒ௪ܹܳܮ௞௜ ݄݂

כ݅݇

ଶ
  (A2-14) 

 

 


