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Summary

Conventional bus service (with fixed routes and schedules) has lower average cost than
flexible bus service (with demand-responsive routes) at high demand densities. At low demand
densities flexible bus service has lower average costs and provides user-friendly door-to-door
service. Bus size is interrelated with service type since large buses have lower average cost per
passenger than small buses at high demand densities, and vice versa. The service type and
vehicle size decisions are jointly optimized here for a bus transit system connecting a major
terminal to local regions. Bus sizes, conventional route spacing and flexible service area are the
decision variables in a proposed algorithm which optimizes a multi-dimensional nonlinear
integer optimization problem. Numerical analysis shows how the proposed Variable Mode &
Multiple Fleets Operation can reduce total cost compared to a Single Fleet & Single Mode
operation. The sensitivity of results to important parameters is explored.

Additional details on the problem and its formulation, the solution methods employed, and the
results obtained are provided in the following report. This report has been submitted for
publication by a transportation journal under the title “Mixed-Fleet Variable-Type Bus Operation”
and is currently under review.



INTRODUCTION

In the literature on bus transit systems several studies focus on service type decisions (such as
conventional service and/or subscription service) or fleet assignment problems (e.g. multiple
fleet assignment for conventional and flexible bus operation) (1~4). Chang and Schonfeld
developed optimization models for conventional and subscription bus services (2, 6). They
confirmed that conventional bus (with fixed routes and fixed schedule) is preferable to
subscription bus (which has demand responsive routes and flexible schedule) when demand
density is high, and vice versa. They also studied optimal bus service dimensions (4), multiple
period optimization of public bus systems (7), and temporal integration of fixed and flexible bus
systems (3). Zhou et al (5) recently maximized welfare under financial constraints for various
bus transit service types and determined conditions under which subsidies may be justifiable.
The above studies provide various approaches for improving the performance of bus transit
systems. However, most of them consider only one local service area.

Public bus services with flexible routes and schedules, have attracted considerable interest
from researchers, especially in recent years (8~21). Lee et al (1) and Fu and Ishkhanov (10)
analyzed the assignment of buses with dissimilar sizes (i.e. “mixed fleets”) to public transit
operations. Lee et al (1) studied mixed bus fleet operations in conventional urban public transit
systems. Fu and Ishkhanov (10) studied mixed fleet bus operation for paratransit services. Mixed
fleets can reduce total system cost compared to single fleets when demand densities differ
considerably over time or space because vehicles of different sizes may be matched to the
operations for which they are most suited.

Kim and Schonfeld (22, 23) considered bus size and service type jointly, confirming that
variable-type service can reduce system cost by changing the service type (or “mode”) as
demand density changes. However, their study optimized decision variables and minimized total
cost between one terminal and only one local region. The potential benefits of using variable
service types (or “modes”) and multiple fleets should theoretically increase when multiple
regions are considered, due to the increased variability of demand densities. To explore these
potential benefits we analyze in this paper the concept of variable-mode bus operation with
multiple fleets (VMBOMF) in multiple local regions. To provide efficient service, we optimize
decision variables for bus sizes (i.e. large bus size and small bus size) and bus service (i.e. route
spacing in local region for conventional bus, service area in local region for flexible bus). The
remaining contents are as follows. In the next section we provide the system description,
assumptions, and cost formulations. Then, we present an optimization algorithm for solving a
nonlinear integer multi-dimensional minimization problem with four decision variables. Using
this methodology, we provide a numerical case and sensitivity analysis.

BUS SERVICE DESCRIPTION AND ITS COST

The analyzed bus system provides service from a major terminal (or CBD) to multiple local
regions. In Figure 1, a public bus system serves local regions connected to a central terminal. For
local regions, either conventional bus or flexible bus can be provided. To analyze this local bus
system, we specify some simplifying assumptions before explaining the cost functions and their
optimization.
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FIGURE 1 Local Service Regions and Bus Services

A previous study (22, 23) addressed assumptions for analyzing a one route service (i.e.
connecting one terminal to one local region). Here, we modify some assumptions and notation to
analyze a more general system with multiple local regions as well as multiple periods.
Henceforth, superscripts £ and i correspond to route and time period, respectively, while
subscripts ¢ and frepresent conventional and flexible service, respectively. Definitions, units and
default values of variables are presented in Table 1.

TABLE 1 Notation

Variable Definition Baseline Value
a hourly fixed cost coefficient for operating bus ($/bus hr) 30.0
a, fixed cost coefficient for bus ownership (capital cost) ($/bus day) 100.0
A service zone area(mile®)=LW/N' -
b hourly variable cost coefficient for bus operation ($/seat hr) 0.2
b, variable cost coefficient for owning bus (capital cost) ($/day) 0.5
d bus stop spacing (miles) 0.2

distance of one flexible bus tour in local region k and period i (miles) -

equivalent line haul distance for flexible bus on route k

(=(LAW)/z+2J), (miles) )

equivalent average bus round trip distance for conventional bus on route k (=

2J%y+W/z+2L),(miles) )

directional demand split factor 1.0

fleet size for route k and period i (buses)

subscript corresponds to (¢ = conventional, f=flexible) )

headway for conventional bus; for route k and period i (hours/bus) -

headway for flexible bus; for route k period i (hours/bus) -

maximum allowable headway for route k and period i

subscript: ¢ = conventional, f=flexible )

minimum cost headway for route k and period i

subscript: ¢ = conventional, f=flexible .

Optimized headway for route k and period i

subscript: ¢ = conventional, f=flexible )
ki Index(k: route, i : period) -
J line haul distance of route k (miles) -

load factor for conventional and flexible bus (passengers/seat) 1.0
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Lw length and width of service area (miles) 5.0,4.0

M¥ equivalent average trip distance for route k (=" +W/2z.+L/2) -
n number of passengers in one flexible bus tour -
N, N’ number of zones in local region for conventional and flexible bus -
QK round trip demand density (trips/mile/hr) -
ki threshold demand density between conventional and flexible service
¢ (trips/mile?/hr) )
r route spacing for conventional bus (miles) -
Rk round trip time of conventional bus for route k and period i (hours) -
R}‘i round trip time of flexible bus for route k and period i (hours) -
Sc ¢ sizes for conventional and flexible bus (seats/bus) -
ki gki conventional and flexible bus sizes for route k and period i .
¢ (seats/bus)
gupper gupper upper bound of bus size arrays )
¢ o subscript: ¢ = conventional, f=flexible
glower glower lower bound of bus size arrays )
¢ of subscript: ¢ = conventional, f=flexible

service cost for route k and period i

ki crki ]

€S subscript: ¢ = conventional, f=flexible

scki scki operatc_)r cost for route_k and perioc_i i )
cor=*fo subscript: ¢ = conventional, f=flexible

scki scki user cqst for route k ar_1d period i _ )
cw = Hfu subscript: ¢ = conventional, f=flexible

scki scki user in_-vehicle cost fo_r route k and_ period i .
v fv subscript: ¢ = conventional, f=flexible

scki scki user w_aiting cost for rpute k and pgriod i )
e subscript: ¢ = conventional, f=flexible

sck user access cost for route k and period i (conventional only) -
total service cost over all routes and periods

TSCe , TSCy subscript: ¢ = conventional, f=flexible )
ki time duration for route k and period i -
u average number of passengers per stop for flexible bus 1.2
A local service speed for conventional bus in period i (miles/hr) 302; ?tzl ; é 4
v} local service speed for flexible bus in period i (miles/hr) 18 "f‘t =1
f 25ati=234
V, average passenger access speed (mile/hr) 2.5
Uy, Uy, Uy value of in-vehicle time, wait time and access time ($/passenger hr) 5,12,12
. . conventional bus = 1.8
y express speed/local speed ratio for conventional bus flexible bus = 2.0
z non-stop ratio = local non-stop speed/local speed; same values asy -
a constant in the flexible bus tour equation (Daganzo, 25) for flexible bus 1.15

superscript indicating optimal value

subscript: ¢ = conventional, f=flexible

For both conventional and flexible buses

All regional areas are assumed to be similar (i.e. rectangular shaped, with length L and width
w). However, local regions may have different line haul distances J* (miles, in route k)
connecting a terminal and local regions’ nearest corner. .
a) The demand is fixed with respect to service quality and price.
b) The demand is uniformly distributed over space within the local regions and over time
within each specified period.
c) The bus size (S. for conventional, Sy for flexible) is uniform throughout a system.



d)

€)
f)

9)

The estimated average waiting time of passengers is equal to half the headway (4. for
conventional, hy for flexible).

Bus layover time is negligible.

Within the local region, the average speed (V. for conventional bus, Vfi for flexible bus)
includes stopping times.

External costs are assumed to be negligible.

For conventional bus only

a)

b)

c)

The local region is divided into N parallel zones with a width r=W/N for conventional bus,
as shown in Figure 1. Local routes branch from the line haul route segment to run along the
middle of each zone, at a route spacing r=W/N.

0" trips/mile*/hour, entirely channeled to (or through) the single terminal, are uniformly
distributed over the service area.

In each round trip, as shown in Figure 1, buses travel from the terminal a line haul distance
J* at non-stop speed yV. to a corner of the local regions, then travel an average of W/2
miles at local non-stop speed zV.! from the corner to the assigned zone, then run a local
route of length L at local speed V! along the central axis of the zone while stopping for
passengers every d miles, and then reverse the above process in returning to the terminal.

For flexible bus only

a)
b)

d)

The local region is divided into N’ equal zones, each having an optimizable zone area
A=LW/N’. The zones should be “fairly compact and fairly convex”.
Buses travel from the terminal line haul distance J* at non-stop speed yV¢ and an average

distance (L+W)/2 miles at local non-stop speed szi to the center of each zone. They collect
(or distribute) passengers at their door steps through an efficiently routed tour of » stops
and length DX at local speedV}. D¥'is approximated by (24), in which D' = ¢vnA,
and @ = 1.15 for the rectilinear space assumed here (25). The values of » and DX are
endogenously determined. To return to their starting point the buses retrace an average of
(L+W)/2 miles at szi miles per hour and J “miles atnyi miles per hour.

Buses operate on preset schedules with flexible routing designed to minimize each tour
distance Dkt .

Tour departure headways are equal for all zones in the local region and uniform within
each period.

Service Cost

In terms of service cost for conventional and flexible bus, we consider bus operating cost, user
in-vehicle cost, user waiting cost, and user access cost. Since flexible bus provides door-to-door
service, its user access cost is negligible.

Conventional Bus Cost




Conventional bus cost for route k and period i, sc¥, includes operating cost, user in-vehicle cost,
user waiting cost, and user access cost, as shown in Equation (1).

pkw(a+bs: ) pLwokimk VWLWQkthCci-i_vxLWQki(r +a)
r vinki v} 2 4Vy

SCH =

(1)

Detailed derivations and explanations for equation (1) are placed in Appendix 1. Total
conventional bus cost over all routes and all periods, TSc. , can be expressed as:

TSC, = YR_1 Xl {SCE x tk}
pkw(a+bs, kipgk kipki ki .
= Zlk(zl Zg:l {( (a < ) wlWo ‘M wlWQ lhcl + VxLWQ l(r +d)> X tkl} (2)

r vinki vi 2 4Vy

Flexible Bus Cost

Similarly, flexible bus cost consists of bus operating cost, user in-vehicle cost and user waiting
cost. Service cost for route K, in period i, sc/*, is formulated as follows:

Qkinki 4 Qkinkt
Lw(a+bsp )(Dp+0A" |— )+v,,LWQ’“(Df+@A* m )+VWLWQkih};i

inki i
A thf 2Vf 2

SCH = (3)

Details for equation (3) are provided in Appendix 2. Total service cost over all routes and
periods, TSC; , is then:

TSC, = YK, T ,{SCk x th}

(K (asosy Yoyeon |2l oopron 20T K \
Lw(a+bs; )(Ds+ v LW QM (Dy+ Lwokipki _
=yKk_¥I_, iK 4+ S L f/ X t’“f 4

ipki i
A thf ZVf 2

Capital Cost

After headways are optimized for each period, they and the round trip times determine fleet size.
Thus, with optimized bus sizes, we have the required fleet matrix for each route and period. For
capital cost, which is our fixed cost component, the required fleet size is the largest of the fleet
sizes that are required to provide service in any periods for all local regions (i.e. largest value

among YX_, F¥1 yK_ F¥2 ... ¥K_ F*)over all periods. Here, the capital cost units are $/day.

MULTI-DIMENSIONAL OPTIMIZATION PROBLEM FOR VARIABLE-MODE BUS
OPERATIONS WITH MIXED FLEETS

In this section, we present a solution method for this multi-dimensional optimization problem.
This is a nonlinear integer optimization problem with integer bus sizes (i.e. integer number of
seats/bus) and integer fleets. To ensure an integer fleet size in any period, we should have integer
numbers of zones for both conventional and flexible bus. (These are necessary conditions for
having integer fleets). Then, we take into account the route spacing (for conventional bus) and
service area (for flexible bus) because these two variables affect the number of zones in local



regions. Thus, in this problem, we have four decision variables, Conventional Bus Size, Flexible
Bus Size, Route Spacing (for conventional bus) and Service Area (for flexible bus).

Preliminary Analysis
Upper/Lower Bounds for Conventional and Flexible Bus Sizes

Maximum and minimum bus sizes can be estimated with the cost formulation. In any given
period, maximum allowable headways for conventional and flexible bus are as follows:

hK o = % (for conventional bus ) (5)
hfimax = jg—lkfi (for flexible bus) 6)

By substituting equations (5) and (6) into (1) and (3), respectively, we obtain equations (7)
and (8).

scki = p*(a+bsE)LwrQkt v iwokimMk | v, wski. v woki(r+d) )
c - viskiy, v 2rf 4V
wi LWQHID (a+bskD) oLw Q¥ (a+bsfh /A/us}“'lf oy LW QKD ¢ v LW QKig /As}‘ilf/u v LWsKiL,
SC = viski + vi + 2Vt + 2vi + 24 (8)
off f f f

In equation (7), conventional bus cost is a function of one decision variable, namely the bus size
S. . In other words, since we can assume that we know all the other input values except bus size,
we optimize bus size with the given information by taking the first derivative of service cost
sckiwith respect to bus size s. . Then, the optimized bus size is:

ki _ I 2arDkLgkt
St = lC\/ vV ©)

In equation (9), the optimized bus size for minimizing service cost is determined by
round travel distance D¥*, demand density Q*¢, and speed V'. Equation (9) can be rewritten as:

ki £ [zari) [oo
SC B {lc VW} Vci (10)

Therefore, using input parameters such as demand, bus speed, and round travel distance,
we can determine upper and lower bounds for optimized bus sizes.

st sp se b
SAZ SBZ SCZ SDZ

sa+ sp4 sc+ gba
SpT sBr sér s
SAZ SBZ SCZ SDZ

5243 5}3 52(1‘3 5233 (12)
Sp+ SBY S¢t sh4)

u er
SSPPET = max |

Slower = min{




In optimizing bus size for flexible bus in a single period, we use the first derivative of the
flexible bus cost function (equation (8)) with respect to bus size s¥ . Unfortunately, that
derivative is difficult to solve analytically since it leads to a 4™ order equation. Thus, we
incorporate here a built-in solver from MATLAB Version 7.9. A function named fiminbnd finds
the minimum value in a nonlinear minimization problem within given search boundaries. Thus,
we optimize the bus size for any period by solving equation (8) with the nonlinear optimization
solver. Similarly to the conventional bus size matrices in equation (11, 12), the upper and lower
bounds of bus size for flexible bus are given in equations (13, 14).

I(S;“ SPr o Sft Sﬁl\l

A2 B2 Cc2 D2

77 = max iif“ D o ?z,gf 13
f f f f
s spr spr s
()

siower — min ff“ S5 3} (14)
SpT ST ST Sy
s spr spr s

From bus size optimization for a single period, we obtain upper bound and lower bounds for
conventional and flexible buses. These boundaries give us the bus size arrays:

Conventional Bus Size Array = {S/PP¢", SYPPe" — 1, ..., Slower ¢ 1, Slower} (15)

Flexible Bus Size Array = {S;™P¢", S{PP" —1,..., 5[ + 1, 57"} (16)

These arrays in equations (15, 16) will be used by the solution algorithm to find the total cost.

Upper/Lower Bounds for Route Spacing and Service Area

Similarly, we seek integer numbers of zones for both modes and integer fleets for each zone. In
other words, the number of zones in each local region helps determine route spacing and service
area. For instance, the minimum number of zones for both modes is one. In this case, route
spacing and service area per bus are automatically determined (i.e. from equations r = W/N and
A=LWI/N’). Conversely, if we have too many zones (i.e. requiring too many buses), bus service
would be inefficient. This gives us the minimum route spacing and minimum service area (and
the corresponding maximum number of zones for services) for avoiding unnecessary search
iterations.

For instance, in our numerical analysis, we set the minimum route spacing and minimum
service area (i.e. size of zone) as 0.5 mile and 2 mile?, respectively. Thus, a local region may be
divided into one (when route spacing is equal to width of region) to 8 (when route spacing is 0.5
mile) equal zones. Similarly, service area 2 mile? says that the number of zones for flexible
service is from 1 zone to 10 zones. These values for route spacing and service area are used to
optimize service cost with integer fleets.

Therefore, route spacing and service area combinations are presented below. In
parentheses, the first number represents the number of zones and the second specifies route
spacing in miles (or service area in mile?).

Conventional Mode Route Spacing Combinations
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= {(1, 4.0), (2, 2.0), (3, 1.33), (4, 1.0), (5, 0.8), (6, 0.67), (7, 0.57), (8, 0.5)} (17)

Flexible Mode Service Area Combinations
={(1, 20.0), (2, 10.0), (3, 6.67), (4, 5), (5, 4), (6, 3.33), (7, 2.86), (8, 2.5), (9, 2.22), (10, 2.0)}  (18)

Route spacing and service area combinations will be used with bus size arrays to
optimize total cost.

Demand Threshold Matrix over Routes and Periods

Anticipating that conventional bus has lower average cost than flexible bus at high demand
densities, and vice versa, we must find the threshold demand for route k in period i, above which
conventional service is preferable and below which flexible service is preferable. This threshold
is obtained by setting equations (7) and (8) to be equal:

"_er lf_sc lc}

ki 2 A rfL
Qtl — (19)
Dkf(a+bs, ) (a+bsf)(Df+@ Asp zf/u)*ka vy(Dp+0 /Asf lf/u*vx(r_'_d)
vise ic Vs, i iz vl T aVx

Using equation (19), for any combination of decision variables (S., S; » and A), we determine the
demand threshold matrix for selecting the conventional or flexible mode.

Solution Search Algorithm

We minimize total cost by optimizing four decision variables, namely conventional bus size,
flexible bus size, conventional bus route spacing, and flexible bus service area. The flow chart
for the solution search algorithm is shown in Figure 2.

From equations (15 ~18), we have feasible search boundaries for four decision variables.
With any combinations of these four variable values, we compute service cost and capital cost in
internal loop. We keep searching numerically for the minimum cost solution until we check all
feasible search boundaries of decision variables while updating results when finding a lower total
cost.
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INPUTS (Parameters, Functions, Arrays, Matrix, Demands)
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FIGURE 2 Search Algorithm

MUMERICAL ANALYSIS

To confirm that the proposed method minimizes cost effectively, we analyze a numerical case
and compare VMBOMF to a single fleet conventional bus and a single fleet flexible bus.
Furthermore, we conduct sensitivity analyses for important input parameters. In the following
sections, a numerical case study and sensitivity analyses are presented.

Baseline Case Study
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Inputs for Baseline Case Study

In the baseline numerical case, we consider four rectangular local regions, each 4 x 5 miles, and
each with four periods (i.e. K = 4 and | = 4). Demand, service time and line-haul distance are
presented in Table 2. All other required input parameters are presented in Table 1.

TABLE 2 Demand, Service Time, and Line-haul Distance

Demand (trips/mile*/hour)

Region
Period A B c D
1 50 45 60 55
2 30 35 40 40
3 10 15 30 15
4 5 7.5 10 5

Time(hours)

Region
Period A B c D
1 4 4 4 4
2 6 6 6 6
3 8 8 8 8
4 6 6 6 6
Region A B C D
Line-haul Distance (miles) 10 15 20 15

Results of Baseline Case Study

The optimized headways and fleet assignments used to minimize total cost for VMBOMF are
presented in Table 3. In Region A, conventional bus operates only during Period 1. Flexible bus
covers Periods 2 ~ 4. In Region C, conventional bus covers three periods, 1 to 3. Only Period 4 is
served by flexible bus. For Regions B and D, conventional bus covers periods 1 and 2 while

flexible bus serves Periods 3 and 4.

TABLE 3 Baseline Case Results

Conventional Bus Headway (hours) Flexible Bus Headway (hours)
~Region A B c D A B c D
Period
1 0.1795 0.2063 0.1566 0.1699 - -
2 - 0.1926 0.1997 0.1834 0.0889 - -
3 - - 0.2296 - 0.2323 0.1765 - 0.1765
4 - - - - 0.3579 0.3000 0.2700 0.3904
Conventional Bus Fleet Assignment (buses) Flexible Bus Fleet Assignment (buses)
~-Region A B c D sum A B c D sum
Period
1 26 28 44 34 132 0 0 0 0 0
2 0 20 23 21 64 35 0 0 0 35
3 0 0 20 0 20 13 21 0 21 55
4 0 0 0 0 0 8 12 16 9 45
Conventional Bus Cost ($/hour) Flexible Bus Cost ($/hour)
~-Region A B c D A B c D
Period
1 5,833.0 6,201.0 9,005.5 7,329.9 0.0 0.0 0.0 0.0
2 0.0 3,998.4 4,979.6 4,452.4 3,051.8 0.0 0.0 0.0
3 0.0 0.0 3,950.9 0.0 1,218.9 1,949.9 0.0 1,949.9
4 0.0 0.0 0.0 0.0 722.2 1,123.1 1,581.6 829.4
Service Cost x Time
Region
Period A B c D
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1 23,332.0 24,803.9 36,022.2 29,319.6
2 18,310.9 23,990.4 29,877.7 26,7145
3 9,751.4 15,599.5 31,607.1 15,599.5
4 4,333.2 6,738.9 9,489.6 4,976.4

Total Service Cost ($/day) = 310,466.6

From fleet assignment results in Table 3, we compute capital cost for conventional and
flexible bus over all time periods. For conventional service, we need at least 132 buses. Similarly,
flexible bus requires 55 buses. With the capital cost function (B, = a. + b.xS), we compute
capital cost for both modes (i.e. CC. = (100+0.5%47) $/bus day x132 buses= 16,302 $/day, CCy
= (100+0.5x18) $/bus day * 55 buses = 5,995 $/day). Total capital cost is then $22,297/day.
Service cost for routes and periods are also provided in Table 3. After multiplying service cost
by the number of hours in each period, we obtain the service cost matrix. Hence, the total service
cost is 310,467%/day using VMBOMEF. Total cost (including capital cost) is $332,764/day.

In Table 4, VMBOMEF provides lower total cost than a single fleet conventional bus, or a
single fleet flexible bus. Optimized bus sizes for VMBOMF are 47 seats/bus for conventional
and 18 seats/bus for flexible bus. Additionally, route spacing is 1 mile for conventional bus and
service area is 6.67 mile? for flexible bus service.

We also develop models that compute total cost for single-fleet conventional flexible bus
services. In comparisons with single fleet, single mode services we note that VMBOMF reduces
total cost. As shown in Table 4, VMBOMF, saves $537 (0.16%) and $23,483(6.59%) per day
compared to single fleet conventional and flexible services, respectively. In this baseline case
study, we confirm that VMBOMF can reduce total cost compared to single fleet & single mode
services.

TABLE 4 Total Cost Comparisons with Single Fleet Operations

VMBOMF Single Fleet Conv. Bus Single Fleet Flex. Bus
Bus Size (seats/bus) 47/18 47 29
Route Spacing / Service Area 1.0/6.67 1.0 2
Fleet Size (buses) 132/55 132 255
Capital Cost ($/day) 22,297 16,302 29,198
Total Cost ($/day) 332,764 333,301 356,247
Total Cost Saving (%) - 0.16 6.59

Sensitivity Analysis

In this section, we explore how the relative advantages of VMBOMF can be affected by demand
variation over time. Table 5 show input values for two sensitivity analysis cases.

TABLE 5 Case Il

Input

Values for Case |

Sensitivity

Analysis

Demand (trips/mile*hour) Time(hours)
~_Region A B c D A B c D

Period
1 10 9 12 11 2 2 2 2
2 6 7 8 8 4 4 4 4
3 2 3 6 3 4 4 4 4
4 1 2 2 1 14 14 14 14

Sensitivity Analysis Results
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In Case 1, we check how an 80% reduction in demand density (to 20 % of baseline demand)
affects total cost and the optimized decision variables. As shown in Table 6, VMBOMF
decreases total costs by about 2.40% and 1.96% compared to single mode systems.

TABLE 6 Sensitivity Analysis Results

Case 1 Result
VMBOMF Single Fleet Conv. Bus Single Fleet Flex. Bus
Bus Size (seats/bus) 38/18
32 23
Route Spacing / Service Area 2/10
2 10
Fleet Size (buses) 22/ 46
40 75
Capital Cost ($/da) 2499 /5014
p ($/day) 4640 8363
Total Service Cost ($/day) 83,626
88,737 84,596
Total Cost ($/d 91,139
otal Cost ($/day) 93,377 92,959
Total Cost Saving (%)
2.40 1.96
Case 2 Result
VMBOMF Single Fleet Conv. Bus .
Single Fleet Flex. Bus
Bus Size (seats/bus) 53/21
53 30
Route Spacing / Service Area 1/10
1.33 5
Fleet Size (buses) 122/53
117 258
Capital Cost ($/da) 15,433 /5,857
P (8/day) 14801 29,670
Total Service Cost ($/day) 218,683
228,340 230,215
Total Cost ($/day) 239,973
243,141 259,885
Total Cost Saving (%)
1.30 7.66

Case 2 explores the sensitivity of results to the distribution of demand over time,
considering relatively long periods with low demand density, as shown in Table 5. In results
provided in Table 6, with longer periods of low demand, VMBOMF saves 1.30% and 7.66% in
total cost compared to single fleet conventional and flexible services, respectively. The
sensitivities of costs and other performance measure to other important parameters are provided
in Kim and Schonfeld (26).

CONCLUSIONS
Summary and Contribution

In this study, we analyze VMBOMF (Variable Mode Bus Operation with Multiple Fleets) for
multiple local regions. To solve our nonlinear integer problem, we propose a solution algorithm
based on analytic optimization of variables and feasible search regions. Results confirm that
VMBOMF can reduce costs compared to single fleet & single mode services (such as single fleet
conventional or single fleet flexible bus). The baseline case shows that 0.16 % and 6.59 %
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savings are achievable compared to single fleet conventional and flexible services, respectively.
In the baseline results the total cost of VMBOMF is close to that of single fleet conventional
service because the demand density is fairly high. Sensitivity analysis shows that the relative
advantages of VMBOMF increase when demand densities decrease and last longer.

Extensions

Various additional questions seem worth exploring. Here we only present two sensitivity
analysis cases. Many other interesting input parameter variations such as region length, line haul
distance, bus speed, walking speed, bus stop spacing (for conventional bus), unit costs and
passenger time values might also be considered. In this paper, we assume that all trips go either
from local regions to terminal or from terminal to local area. Comparisons of VMBOMF with
variable-mode & single-fleet services and single-mode & multiple-fleet services are also
desirable. For travel among the local regions an optimization model should also seek to
coordinate headways and minimize transfer delays at the major terminal.
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APPENDIX 1 Conventional Bus Cost Formulations

Kim and Schonfeld (2011a) presents conventional service cost formulations for a one route bus
system in analyzing the variable-type bus service concept. In this paper, we modify its
formulations to extend them to multiple local regions.

As shown in Figure 1, buses travel from the terminal a line haul distance J* at non-stop
speed yv! to a corner of the service area, then travel an average of #/2 miles at local non-stop
speed zv; from the corner to the assigned zone, run a distribution route of length L at local speed
v} along the central axis of the zone while stopping for passengers every d miles, and the reverse
the process in returning. Therefore, the buses’ average round trip time is:

RM =2 Wy 2 (ALD)

yVe zZV¢ Ve
This round trip time can differ among routes and periods. The previous study (Kim and
Schonfeld, 2011a) does not consider travel speed variations over time. Equation (Al-1) can be
re-written as:

RKi = {% + %+ 2L}/ (A1-2)

Inkequation (A1-2), the expression in parentheses represents an equivalent bus round trip distance,
D".

The total cost of conventional bus service (in route k, at period i) includes the operator
cost sck and the user cost scki. To determine operator cost, we determine the fleet size N, which
is the total bus round trip time divided by the headway. With the equivalent bus round travel
distance D", a controllable directional split factor £, and conventional bus speed V., we obtain the
required fleet size FX:

Fki = 2w ,where D¥ = 2]%/y + W /z + 2L (A1-3)

PREV

The hourly conventional bus operator cost sck is the required fleet size multiplied by bus
operating cost:

pkw
rhkiyi

SCki = Fkip = (a +bS,) (A1-4)

The hourly user cost for the conventional bus service at route k & period i, scki is the sum of in-
vehicle cost scki, waiting cost scki, and access cost Scki:

Scki = scki + scki + scki (A1-5)
The hourly in-vehicle cost for the conventional service is then:
Sck = v, LW Qtk (A1-6)

The average travel time ¢¥* for passenger trip is formulated as:
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_ k k
thi = EARR AN R where M*=J'/y + W/2z + L/2 (A1-7)

yvi o2z 2vi v

Then equation (A1-7) can be written as:
SCK = v, LW QK ”;—k (A1-8)

We assume the average waiting time is half the headway. Therefore, the hourly user waiting cost
for conventional system sckiis:

. . pki
SCE, = v, LW Q4 = (A1-9)

Since the spacing between adjacent branches of local bus service is r, and since service
trip origins (or destinations) are uniformly distributed over the local region, the average access
distance to the nearest route is one-fourth of route spacing, »/4. Similarly, the access distance
alongside the route to the nearest transit stop is one-fourth of the bus stop spacing, i.e., d/4.
Therefore, the hourly access cost for the conventional bus system sck is:

v LW QK (r+d)
4V,

Scki = (A1-10)

The total service cost for the conventional system scki is the sum of operating cost and user cost:

. pkw ik ki
SCCk& = W(a + bSC) + vULWleV_Ci + UWLWQkL TC +

vxLWQki(r+d)
4V,

(A1-11)
Since we consider multiple periods for bus operations, the optimized headway should be smaller
value between the maximum allowable headway and minimum cost headway. The maximum
allowable headway for route k and period i is:

Scle

hé{imax = rLFQK (Al-lZ)

The minimum cost headway can be obtained from the partial derivative of equation (A1-11) with
respect to headway;

i 2Dk (a+bS;)
heomin = /VWTQMVZL (A1-13)

Then, optimal headway is then:

ki o Scle 2Dk (a+bS.)
h&ope = min {rLkai’ ’vWLeriVCi} (A1-14)

The optimized headway obtained in equation (A1-14) applies to equation (Al1-3) for optimizing
pkw
rh’ca;nptvci
size must be rounded off to an integer value. The modified headway k¥ can similarly obtained

the conventional service fleet size for route k and period i (Fc"f,pt = ). However, this fleet
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by using equation (A1-3). All such modified headways should be equal to or below the
maximum allowable headway in equation (A1-12).

The service cost for route k and in period i, is finally formulated by substituting modified
headway into equation (A1-3).

pkw
rhkixyi
(4 c

vxLWQki(r+d)
4V,

. . vk . pkix
SCkir = (@+bS,) + v, LWQH 7 + v, LWQ "~ + (A1-15)
c

APPENDIX 2 Flexible Bus Cost Formulations

The flexible cost formulation introduced by Chang and Schonfeld (2) considers only one-
directional service (i.e. only collecting OR distributing passengers). Here, we consider 2-
directional demand (i.e. pick up and drop off passengers within one tour). Since the formulation
from Chang and Schonfeld (2) applies for only one local region, we modify some notation and
improve equations to consider multiple local regions in the flexible service formulation even
though most of them are similar to those by Chang and Schonfeld (2)

For flexible service such as Dial-A-Ride, the efficient tour distance D. for visiting
randomly and independently dispersed n points among area A is approximately (24, 25)):

D, = ONnA (A2-1)

For a grid network (i.e. rectilinear space), a @ value of 1.15 is appropriate for analyzing
flexible service cost (25). In equation (A2-1), n is the number of stops per tour, which is the
hourly round trip demand in each zone AQ* multiplied by service headway rf* and divided by
number of passengers u per stop:

_ 0k

n= (A2-2)

u

Substituting equation (A2-2) into (A2-1), we optimize the tour distance in service area A4 as:

, kipki kipki
D¥ = @ /AQTfA = gL (A2-3)

Round travel time can be calculated as follows:

. k ki ki pkypki
R}“—Z(HW ]_) DL'=(L+W)/;+21/y+DL'_ F+Dc (A2-4)

2sz£ ny‘ Vfl V; Vfl V;

where, equivalent round travel distance Df=(L+W)/z +2]*/y

The fleet size is:

) ki k,pki  LW(DK+pa /Qkih’“/u)
LWR Lw Df+D f f
kaL — f o e _ (A2-5)

ST T R ok K
Ahf Anft v VsAhf

The hourly flexible bus operator cost scf. is the required fleet size multiplied by bus
operating cost:
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) ] Lw(D¥+0a /Qkihki/u)
sci = piip= —1 L (a+bs)) (A2-6)

ki jpki
Vf Ahf

The hourly user cost for the flexible bus service for route k & period i, Scfi is the sum of in-
vehicle cost sc/, and waiting cost SCAL:

SCH = SCf + SCf, (A2-7)

The hourly in-vehicle cost for the flexible service is then:

ki i nky ki i DK+04 |QKinki/u)
i i R LWQKki Dg+D, LwQki P f
SCH = v LwQkiL =2 Q Ty _ TelWe (A2-8)

ki ki
2 Vf 2 Vf

Assuming average waiting time is approximately half of the headway, the waiting cost sck. is:

i Rkt
SCHy = v LWQM L (A2-9)

The total service cost for the flexible bus operation scki is the sum of operating cost and user
costs:

_ Lw(a+bSp)(D¥+84 |Qkinki/u) ki D¥+0A /Qkihki/u) pki
sck = ! S U i ——+ v, LwQk L (A2-10)

ki pki ki
Vf Ahf 2 Vf

Since we consider multiple periods, the optimized headway should be (1) the maximum
allowable headway OR (2) the minimum cost headway, whichever is smaller. The maximum
allowable headway for route k and period i is:

Bfnax = 25 (A2-11)

The minimum cost headway can be obtained from the partial derivative equation (A2-10)
with respect to headway h}‘i. An analytically optimized solution with respect to headway for a
one route bus service is provided in Kim and Schonfeld (22). However, since our problem here is
a nonlinear minimization problem, and difficult to solve analytically, we here apply the function
fminbnd in MATLAB Version 7.9 to find the minimum value. This function allows us to easily

obtain the minimum cost headway h}‘imin. Thus, the optimized headway for flexible service is:

W = min {220 i) (A2-12)

AQki » It min

The optimized fleet size for flexible service is found by substituting equation (A2-12) into (A2-
5):

) Lw(D¥+pa /Qkih"i Ju)
FK ! fort (A2-13)

opt ™ VsARKL
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This equation (A2-13), similarly to conventional service fleet size, must yield an integer value.
Therefore, we round off fleet size to an integer value, and then check if modified headway
violates maximum allowable headway. If modified headway violates maximum allowable
headway, we round up fleet size to have integer number of buses. Modified headway denoted as

h}‘i* provides minimum total service cost with integer fleet size.

Minimum service cost with integer fleet for flexible bus operation is obtained by
applying modified headway into equation (A2-10):

vie  LW(a+bsp)(Df+04 /Q"ihlfi*/u) v, LwQki Df +OA Qkih;i*/u) ki hl;i*
SCki* = ek + : + v, LWQk L (A2-14)
j A z F 2
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